Global Prevalence of Depression and Anxiety in Patients with Hepatocellular Carcinoma: Systematic Review and Meta-analysis

Darren Jun Hao Tan1*, Sabrina Xin Zi Quek1,2*, Jie Ning Yong1, Adithya Suresh1, Kaiser Xuan Ming Koh1, Wen Hui Lim1, Jingxuan Quek1, Ansel Tang1, Caitlyn Tan1, Benjamin Nah2, Eunice Tan1,2, Taisei Keitoku3, Mark D. Muthiah1,2, Nicholas Syn1, Cheng Han Ng1, Beom Kyung Kim4,5, Nobuharu Tamaki3, Cyrus Su Hui Ho1,6, Rohit Loomba7, Daniel Q. Huang1,2,7

1Yong Loo Lin School of Medicine, National University of Singapore, Singapore
2Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore, Singapore
3Department of Gastroenterology and Hepatology, Musashino Red Cross Hospital, Tokyo, Japan
4Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
5Yonsei Liver Center, Severance Hospital, Yonsei University Health System, Seoul, Republic of Korea
6Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
7NAFLD Research Center, Division of Medicine, University of California San Diego, La Jolla, California, USA

*Joint first authors

Corresponding authors:
Daniel Q. Huang, MBBS, MRCP (UK), MMED (Int Med)
Assistant Professor of Medicine (Gastroenterology, Hepatology and Liver Transplant)
Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
National University Health System, Singapore.
Email: daniel_huang@nus.edu.sg

Darren Jun Hao Tan
Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
Email: darrentan.j.h@gmail.com
List of Abbreviations: HCC- Hepatocellular Carcinoma; QOL- quality of life; TACE- transarterial chemoembolization; PRISMA- Preferred Reporting Items for Systematic Reviews and Meta-Analyses; HADS- Hospital Anxiety and Depression Scale; CES-D- Korean Center for Epidemiological Studies-Depression Scale; SDS- Self-Rating Depression Scale; BDI- Beck’s Depression Inventory; DSM-V- Mental Disorders, 5th edition; ICD-9- International Classification of Disease, Ninth Revision; ICD-10- International Classification of Disease, Tenth Revision; HAM-D- Hamilton Depression Rating Scale; SAS- Zung Self-rating Anxiety Scale; BAI- Becks’ Anxiety Inventory; BMI- body mass index; AFP- alpha- feto protein; JBI- Joanna Briggs Institute
ABSTRACT

Background:
Depression and anxiety are associated with poorer outcomes in patients with hepatocellular carcinoma (HCC). However, the prevalence of depression and anxiety in HCC are unclear. We aimed to establish the prevalence of depression and anxiety in patients with HCC.

Methods:
MEDLINE and Embase were searched and original articles reporting prevalence of anxiety or depression in patients with HCC were included. A generalized linear mixed model with Clopper-Pearson intervals was used to obtain the pooled prevalence of depression and anxiety in patients with HCC. Risk factors were analyzed via a fractional-logistic regression model.

Results:
17 articles involving 64,247 patients with HCC were included. The pooled prevalence of depression and anxiety in patients with HCC was 24.04% (CI 13.99–38.11%) and 22.20% (CI 10.07–42.09) respectively. Subgroup analysis determined that the prevalence of depression was lowest in studies where depression was diagnosed via clinician-administered scales (16.07%, CI 4.42–44.20%) and highest in self-reported scales (30.03%, CI 17.19–47.01%). Depression in patients with HCC was lowest in the Americas (16.44%, CI 6.37–36.27%) and highest in South-East Asia (66.67%, CI 56.68–75.35%). Alcohol consumption, cirrhosis, and college education significantly increased risk of depression in patients with HCC. The prevalence of anxiety in HCC was 22.20% (CI 10.07–42.09).

Conclusion:
One in four patients with HCC have depression, while one in five have anxiety. Further studies are required to validate these findings, as seen from the wide confidence intervals in certain subgroup analyses. Screening strategies for depression and anxiety should also be developed for patients with HCC.
Keywords: Depression, Anxiety, Hepatocellular Carcinoma, HCC, Prevalence, Risk factors, Meta-analysis, Systematic review, Liver cell carcinoma, Mental Health

INTRODUCTION

Hepatocellular carcinoma (HCC) is the third leading cause of cancer death worldwide.1 Despite surveillance programs, the majority of patients with HCC are diagnosed at an advanced stage.2-6 Overall, the prognosis of HCC is poor, even among patients who have undergone curative treatment7-10. Studies have demonstrated poor quality of life (QOL) among patients with HCC due to complications of the cancer and decompensated liver cirrhosis including pruritus, fatigue, sexual dysfunction, and ascites.11,12 Additionally, treatments for HCC including liver resection and transarterial chemoembolization (TACE) have themselves been associated with significant morbidity which reduces QOL.13,14 In particular, depression and anxiety are common in patients with HCC15-17, and are associated with poorer survival outcomes and reduced QOL for patients and family members.18-21

However, existing cohort studies evaluating the prevalence of depression and anxiety in patients with HCC have produced a wide range of estimates, in part due to different methods of diagnosis17,22,23. The prevalence of depression and anxiety among patients with HCC have not been systemically evaluated. In light of these considerations, we conducted a systematic review and meta-analysis to evaluate the global prevalence and risk factors of depression and anxiety in patients with HCC.
METHODS

Search strategy

This systematic review and meta-analysis adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) in its synthesis. A search was conducted on MEDLINE and Embase databases from inception to 9 February 2022 for keywords and MeSH terms synonymous with “hepatocellular carcinoma”, “depression”, and “anxiety”. The full search strategy is included in Supplementary Material 1. To ensure a comprehensive search, we screened grey literature by reviewing bibliographies of included articles.

Study selection and data extraction

Two authors (DJHT and JNY) independently sieved titles and abstracts, followed by full-text review for eligibility for inclusion. Disputes were resolved through consensus from a third independent author (DQH). Original articles, including retrospective and prospective cohort studies, and randomized-control trials were considered for inclusion, while editorials, systematic reviews, meta-analyses and commentaries were excluded. We included studies written or translated into English language. Studies were included if they reported the prevalence of depression or anxiety in patients with HCC. Studies conducted in pediatric populations were excluded. The diagnosis of depression in included articles was classified into self-reported, self-rated and clinician-rated diagnoses. Self-reported diagnosis included identification of depression through self-reporting of medical history, while self-rated diagnosis of depression comprised of patient responses from the Hospital Anxiety and Depression Scale (HADS), Korean Center for Epidemiological Studies-Depression Scale (CES-D), Zung Self-Rating Depression Scale (SDS), and the Beck’s Depression Inventory (BDI). Clinician-rated diagnosis comprised of depression diagnosed by psychiatrist according to the criteria of the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-V), International Classification of Disease, Ninth Revision (ICD-9) and Tenth Revision (ICD-10), and the Hamilton Depression Rating Scale (HAM-D). In the included articles, a diagnosis of anxiety was done through self-rated scales (HADS; Zung Self-rating Anxiety Scale (SAS); and Beck’s Anxiety Inventory (BAI)), or from self-reported physician diagnosis.
Relevant data, comprising study and patient characteristics, were independently extracted by a pair author (DJHT and JNY) into a structured form. The primary outcome of interest was the prevalence of depression, and anxiety in patients with HCC. Study characteristics included author, study period, location, and study design. Patient characteristics included age, gender, body mass index (BMI), diabetes status, history of smoking, history of alcohol consumption, presence of cirrhosis, alpha-feto protein (AFP), employment status, and household income. The proportion of patients with HCC from viral etiologies, and the proportion of patients receiving curative treatment for HCC were also recorded. Curative treatment was defined as liver transplantation, liver resection, or ablation. Where only median and interquartile ranges were reported, we conducted transformation of values into mean and standard deviations via the widely adopted formulas by Wan et al.26

Statistical analysis

Statistical heterogeneity was assessed via I^2 and Cochran’s Q test values, where I^2 value of 25%, 50% and 75% represented low, moderate, and high degrees of heterogeneity respectively.27,28 Random effects model was used in all analyses regardless of heterogeneity measures as evidence has demonstrated more robust effect estimates with random effect compared to fixed effect models.29,30 We used RStudio (version 1.3.1093) for all analyses. A two-tailed p value of less than 0.05 was considered as the threshold for statistical significance.

An analysis of proportions was pooled using a generalized linear mixed model with Clopper-Pearson intervals to evaluate the prevalence of depression and anxiety in patients with HCC.31,32 To account for potential sources of heterogeneity, subgroup analysis was conducted according to diagnostic criteria for depression (self-reported, self-rated, or clinician-reported diagnosis). Subgroup analysis was also conducted according to the World Health Organization regions (Americas, European, South-East Asian, and Western Pacific regions). Additional sensitivity analysis was conducted for studies involving only patients that received curative treatment for HCC. There were insufficient studies to conduct similar subgroup and sensitivity analysis for the prevalence of anxiety in patients with HCC. When sufficient studies were available, analysis on the effect of risk factors on the prevalence of depression in patients with HCC was conducted with a generalized linear model in the binomial family with a logit link and inverse variance weightage via a fractional-logistic regression model. The
coefficients were than exponentiated to obtain the odds ratio (OR) and corresponding 95% confidence intervals (95% CI). There were insufficient studies to evaluate the effect of risk factors on the prevalence of anxiety in patients with HCC.

Risk of bias and quality assessment

Quality assessment of included articles was done with the Joanna Briggs Institute (JBI) Critical Appraisal Tool. The JBI assessment rates the risk of bias of cohort studies on the premises of appropriateness of sample frame, sampling method, adequacy of sample size, data analysis, methods for identification and measurement of relevant conditions, statistical analysis and response rate adequacy and is the most widely used tool in prevalence meta-analysis. **Supplementary Materials 2** summarises the quality assessment scores for included articles.
RESULTS

Summary of included articles

The initial search from MEDLINE and Embase yielded 2,869 references, of which 1,773 references were screened after the removal of duplicates. Following the initial title and abstract screen, 91 articles were selected for full-text review, and 17 articles involving 64,247 patients with HCC were included in the meta-analysis (Figure 1). Nine studies described the prevalence of depression in patients with HCC, while eight studies evaluated the prevalence of both depression and anxiety. Depression was identified through physician-administered assessments (Diagnostic and Statistical Manual of Mental Disorders, 5th edition; International Classification of Disease, Ninth Revision (ICD-9) and Tenth Revision (ICD-10); and the Hamilton Depression Rating Scale (HAM-D)), self-rated scales (Hospital Anxiety and Depression Scale (HADS); Korean Center for Epidemiological Studies-Depression Scale (CES-D); Zung Self-Rating Depression Scale (SDS); and the Beck’s Depression Inventory (BDI)), or through self-reported physician diagnosis. Anxiety was identified through self-rated scales (HADS; Zung Self-rating Anxiety Scale (SAS); and Beck’s Anxiety Inventory (BAI)), or from self-reported physician diagnosis. A summary of the included articles is included in Supplementary Material 2.

Prevalence of depression in patients with HCC

Overall analysis

The overall prevalence of depression in patients with HCC was 24.04% (CI 13.99 – 38.11%) (17 studies, 62,247 patients) (Table 1). To account for heterogeneity potentially arising from differences in diagnosis of depression, analysis was stratified by diagnostic criteria for depression. In studies where depression was identified from physician-administered assessments (6 studies, 63,668 patients), the prevalence of depression in patients with HCC was 16.07% (CI 4.42 – 44.20%), which was lower than the prevalence in studies where depression was identified through self-administered scales (30.03%, CI 17.19 – 47.01%; 9 studies, 1408 patients), or through self-reported diagnosis (27.90%, CI 18.98 – 38.98%; 2 studies, 249 patients), although the difference did not reach the conventional threshold for statistical significance (Figure 2, p=0.60). In a sensitivity analysis of studies involving only patients who received curative treatment for HCC (5 studies, 579 patients), the prevalence of depression was 22.17% (CI 10.79 – 40.15%).
By study design and study cohort

In subgroup analysis by study design, the prevalence of depression was significantly higher in prospective studies (34.13%, CI 20.52 – 50.97%; 10 studies, 1530 patients) versus retrospective studies (13.76%, CI 5.22 – 31.64%; 7 studies, 62,717 patients) (p<0.0001). There was a numerically higher prevalence of depression in hospital database studies (34.09%, CI 23.61 – 46.38%; 14 studies, 2,018 patients) versus population-based studies (3.33%, CI 1.88 - 5.82%; 3 studies, 62,229 patients), although the difference did not reach the threshold for statistical significance (p=0.07).

By World Health Organization region

The prevalence of depression was lowest in the Americas (16.44%, CI 6.37 – 36.27%; 4 studies, 4,956 patients), followed by Europe (20.31%, CI 4.34 – 58.87%; 2 studies, 130 patients), the Western Pacific (24.92%, CI 11.89 – 44.93; 10 studies, 59,065 patients), with the highest prevalence in South-East Asia (66.67%, CI 56.68 – 75.35; 1 study, 96 patients), (*Figure 3*, p<0.0001).

Factors associated with depression in patients with HCC

We performed meta-regression of study-level data to determine the association of clinical factors with depression (*Table 2*). Alcohol consumption, (OR 1.07, CI 1.03 – 1.11, p=0.013), cirrhosis (OR 1.05, CI 1.03 – 1.08, p=0.0060), college education, (OR 1.03, CI 1.01 – 1.06, p=0.032) were associated with increased odds of depression among patients with HCC. Female gender (OR 0.81, CI 0.72 – 0.91, p=0.0030) and Child-Pugh A cirrhosis (OR 0.98, CI 0.97 – 0.99, p=0.024) were associated with reduced odds of depression in patients with HCC. Study-level data for age, BMI, diabetes, smoking history, employment status, and income below poverty level were not associated with the risk of depression in patients with HCC.

Prevalence of anxiety in patients with HCC

From pooled analysis of 8 studies and 1,327 patients, the prevalence of anxiety in patients with HCC was 22.20% (CI 10.07 – 42.09). Data were insufficient to provide subgroup analysis for mode of diagnosis, region, or risk factors.
DISCUSSION

Main findings

In this systematic review and meta-analysis of 17 studies involving 64,247 patients, the pooled global prevalence of depression and anxiety in patients with HCC was 24%. There was a similar prevalence of depression (22%) among patients who underwent curative therapy, and when stratified by mode of diagnosis. The prevalence of depression varied widely by WHO region, with the lowest in the Americas (16%) and the highest in South-East Asia (67%). The pooled prevalence of anxiety was 22%, but data were insufficient for subgroup analyses or meta-regression, and more studies are required.

These data have important clinical implications as they demonstrate the high prevalence of depression among patients with HCC, which could be attributed to several factors. The profound psychological burden of cancer diagnosis, stress associated with repeated examinations and hospital visits, and adverse effects of various treatment modalities contribute to the increased risk of depression and anxiety in HCC patients. Progression of the disease, as well as a fear of being terminally ill due to false interpretation of somatic symptoms have also been shown to contribute to increased risk of anxiety in patients with cancer. Due to the high prevalence of psychological conditions in HCC patients, care providers should have a low threshold to screen patients with HCC for depression and anxiety. Among patients with mood disorders, preemptive non-pharmacological strategies such as more comprehensive education and supportive services may be instituted. Care providers may consider early referral of such patients to psychological services that can provide cognitive behavioral therapy and tailored pharmacological therapy as these have been associated with a higher QOL and overall survival.

The prevalence of depression in studies using self-administered assessments was higher than that in studies that used physician-administered assessments (30% vs 17%). However, self-administered assessments often over-estimate depression rates due to the misidentification of symptoms of chronic liver disease such as fatigue, poor concentration, lack of appetite as somatic symptoms of depression. Furthermore, self-administered assessments are screening tools which are unable to diagnose major depression, and physician-rated diagnosis remains the gold standard of diagnosing...
psychological conditions. Nonetheless, self-rated questionnaires are often used as screening tools in clinical settings due to the ease and speed of administration, and could still provide important data regarding the mental wellbeing of patients with HCC. However, there is still no consensus on a validated assessment tool for the screening of mental wellbeing in HCC patients to date. Further studies are required to identify optimal strategies to identify depression and anxiety in patients with HCC.

There was a higher prevalence of depression in patients with HCC in the Western Pacific and South-East Asia regions versus the Americas and Europe. This could be contributed by lower depression literacy in the Western Pacific and South-East Asia, as well as cultural stigmas against mental illness in these regions. These could act as barriers against initial health-seeking behavior, increasing the risk of psychiatric disorders in patients with HCC in these regions.

Alcohol consumption, cirrhosis and having a college education level were associated with higher odds of depression. Alcohol use is associated with an increased risk of depressive disorders, related to binge drinking, alcohol abuse and dependence. In the existing literature, cirrhosis has also been associated with a poor quality of life due to both physical and psychological health deterioration. Impaired liver function in patients with cirrhosis often result in decreased quality of life, and recurrent hospitalizations associated with cirrhosis can further contribute to the progression of depression. Interestingly, our analysis determined that female gender was associated with decreased odds of depression in patients with HCC. This is in contrast to previous studies by Pedersen et al and Graham et al, which found that female gender was associated with an increased risk of depression. This has been attributed to differences in hormones, psychological stressors and the effects of childbearing in female patients. Hence, these results should be interpreted with caution, especially since data in females were relatively scarce (<37% female in all included studies).

In context with current literature
A systematic review of the psychological burden in patients with hepatobiliary cancers by Graf et al, reported that the prevalence of depressive symptoms was 27.8% (4 studies, 799 patients), and the prevalence of anxiety was 39.8% (3 studies, 515 patients). However, this study was limited by the
relatively small number of patients, and it is unclear if its findings can be generalized specifically to patients with HCC. Our study builds on the data provided by the previous study and provides a global overview of the prevalence of depression and anxiety specifically in HCC. A meta-analysis by Krebber et al.56 reported that the prevalence of depression in patients with malignancies from all organ systems ranged from 8-24% depending on the method of diagnosis for depression. The data from the current study suggest that there is comparable risk of depression in patients with HCC versus other causes of cancer. However, data regarding the comparative risk of depression in patients with HCC versus other cancers are limited.

Strengths and limitations

To the best of our knowledge, this study provides the first and most comprehensive analysis of the prevalence of depression and anxiety in patients with HCC to date. However, the study is not without its limitations. Firstly, there was significant heterogeneity in the pooled estimates, which persisted despite subgroup/sensitivity analyses by study design, study cohort, WHO region, modality used to diagnose depression and the presence of curative treatment. In subgroup analysis by study cohort, there was significantly lower prevalence of depression in population-based studies versus hospital database studies (3% vs 34%), contributing to the significant heterogeneity in the overall pooled estimate. The prevalence of depression in population-based studies was likely to be grossly underestimated, and could be related to the limited number of studies (n=3) as well as underdiagnosis, highlighting the need for greater awareness of the risk of depression in patients with HCC. There were limited studies that reported the prevalence of depression in South-East Asia and Europe, resulting in wide confidence intervals for the pooled prevalence of depression in patients with HCC in these regions. Wide confidence intervals were also observed in the subgroup analysis by diagnostic criteria of depression, hence these findings should be interpreted with caution and require validation in future studies. Additionally, there was a paucity of data from the Eastern Mediterranean and African regions, hence further studies are required to determine the prevalence of psychiatric conditions in patients with HCC from these regions. There was also inadequate data for meaningful subgroup analysis for the prevalence of anxiety in HCC patients, and more data are required.

Conclusion
One in four patients with HCC suffer from depression, and one in five suffer from anxiety. Care providers looking after patients with HCC should have a low threshold to screen for depression and anxiety. This would help facilitate timely diagnosis and referral to psychological services as studies suggest poorer QOL and mortality outcomes in patients with psychological conditions. Further studies are required to determine optimal screening strategies for depression and anxiety in patients with HCC.

DECLARATIONS

Funding
There was no external funding for this project.

Conflicts of Interest
None of the authors declare any conflict of interest.

Data availability
All articles in this manuscript are available from Medline and Embase.

Clinical Trials Registration
Not applicable

Consent to Participate
Not applicable

Animal Research (Ethics)
Not Applicable

Acknowledgements
All authors have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or
revising it critically for important intellectual content, (3) final approval of the version to be submitted. No writing assistance was obtained in the preparation of the manuscript. The manuscript, including related data, figures and tables has not been previously published and that the manuscript is not under consideration elsewhere.
AUTHOR CONTRIBUTIONS

Conceptualization – Daniel Q. Huang
Data curation – Darren Jun Hao Tan, Sabrina Xin Zi Quek, Cheng Han Ng
Formal analysis – Darren Jun Hao Tan, Sabrina Xin Zi Quek, Jie Ning Yong, Cheng Han Ng
Data verification – Darren Jun Hao Tan, Sabrina Xin Zi Quek, Jie Ning Yong, Adithya Suresh, Kaiser Xuan Ming Koh
Supervision – Daniel Q. Huang
Writing, original draft – Darren Jun Hao Tan, Sabrina Xin Zi Quek, Jie Ning Yong, Cheng Han Ng
Writing, review, and editing – Darren Jun Hao Tan, Sabrina Xin Zi Quek, Jie Ning Yong, Adithya Suresh, Kaiser Xuan Ming Koh, Wen Hui Lim, Jingxuan Quek, Ansel Tang, Caitlyn Tan, Benjamin Nah, Eunice Tan, Mark D. Muthiah, Nicholas Syn, Cheng Han Ng, Taisei Keitoku, Beom Kyung Kim, Nobuharu Tamaki, Cyrus Su Hui Ho, Rohit Loomba, Daniel Q. Huang

All authors have read and approved the final version of the manuscript for submission.

REFERENCES

27. Fletcher J. What is heterogeneity and is it important? *BMJ.* 2007;334(7584):94-96.

Figure 1: PRISMA flowchart of included articles
Figure 2: Forest plot of prevalence of depression in patients with hepatocellular carcinoma, stratified by diagnosis method.
Figure 3: Prevalence of depression in patients with hepatocellular carcinoma, stratified by WHO region

- Overall: 24%
- Americas: 16%
- Europe: 20%
- South-East Asia: 67%
- Western Pacific: 25%
<table>
<thead>
<tr>
<th></th>
<th>No. of studies</th>
<th>Patients</th>
<th>Pooled proportion (95% CI)</th>
<th>Cochran-Q</th>
<th>i^2</th>
<th>Subgroup difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depression</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>17</td>
<td>64247</td>
<td>24.04 (13.99 – 38.11)</td>
<td><0.01</td>
<td>99.50%</td>
<td></td>
</tr>
<tr>
<td>Curative treatment only</td>
<td>5</td>
<td>579</td>
<td>22.17 (10.79 – 40.15)</td>
<td><0.01</td>
<td>93.70%</td>
<td></td>
</tr>
<tr>
<td>Method of diagnosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Self-reported diagnosis</td>
<td>2</td>
<td>249</td>
<td>27.90 (18.98 – 38.98)</td>
<td>0.01</td>
<td>84.00%</td>
<td></td>
</tr>
<tr>
<td>Self-rated scale</td>
<td>9</td>
<td>1408</td>
<td>30.03 (17.19 – 47.01)</td>
<td><0.01</td>
<td>95.60%</td>
<td></td>
</tr>
<tr>
<td>Clinician-administered scale</td>
<td>6</td>
<td>62590</td>
<td>16.07 (4.42 – 44.20)</td>
<td><0.01</td>
<td>99.60%</td>
<td></td>
</tr>
<tr>
<td>Study cohort</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.0001</td>
</tr>
<tr>
<td>Hospital database</td>
<td>14</td>
<td>2018</td>
<td>34.09 (23.61 – 46.38)</td>
<td><0.01</td>
<td>94.80%</td>
<td></td>
</tr>
<tr>
<td>Population-based</td>
<td>3</td>
<td>62229</td>
<td>3.33 (1.88 - 5.82)</td>
<td><0.01</td>
<td>98.90%</td>
<td></td>
</tr>
<tr>
<td>Study design</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.07</td>
</tr>
<tr>
<td>Retrospective</td>
<td>7</td>
<td>62717</td>
<td>13.76 (5.22 - 31.64)</td>
<td><0.01</td>
<td>99.50%</td>
<td></td>
</tr>
<tr>
<td>Prospective</td>
<td>10</td>
<td>1530</td>
<td>34.13 (20.52 - 50.97)</td>
<td><0.01</td>
<td>95.90%</td>
<td></td>
</tr>
<tr>
<td>Anxiety</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall</td>
<td>8</td>
<td>1327</td>
<td>22.20 (10.07 – 42.09)</td>
<td><0.01</td>
<td>96.60%</td>
<td></td>
</tr>
</tbody>
</table>
Table 2 Risk factors for depression in patients with HCC

<table>
<thead>
<tr>
<th>Risk factor</th>
<th>No. of studies</th>
<th>Patients</th>
<th>Odds Ratio (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>11</td>
<td>59449</td>
<td>0.98 (0.78 – 1.22)</td>
<td>0.84</td>
</tr>
<tr>
<td>Female</td>
<td>10</td>
<td>59296</td>
<td>0.81 (0.72 – 0.91)</td>
<td>0.003</td>
</tr>
<tr>
<td>BMI</td>
<td>3</td>
<td>608</td>
<td>1.15 (0.92 – 1.38)</td>
<td>0.46</td>
</tr>
<tr>
<td>Diabetes</td>
<td>4</td>
<td>58024</td>
<td>1.05 (0.92 – 1.21)</td>
<td>0.24</td>
</tr>
<tr>
<td>Smoking</td>
<td>3</td>
<td>779</td>
<td>1.01 (0.98 – 1.04)</td>
<td>0.45</td>
</tr>
<tr>
<td>Alcohol</td>
<td>4</td>
<td>2760</td>
<td>1.07 (1.03 – 1.11)</td>
<td>0.013</td>
</tr>
<tr>
<td>Cirrhosis</td>
<td>6</td>
<td>58833</td>
<td>1.05 (1.03 – 1.08)</td>
<td>0.006</td>
</tr>
<tr>
<td>AFP</td>
<td>3</td>
<td>554</td>
<td>1.00 (0.90 – 1.02)</td>
<td>0.15</td>
</tr>
<tr>
<td>Curative treatment</td>
<td>4</td>
<td>757</td>
<td>1.02 (0.98 – 1.04)</td>
<td>0.18</td>
</tr>
</tbody>
</table>

Child-Pugh class

<table>
<thead>
<tr>
<th>Child-Pugh class</th>
<th>No. of studies</th>
<th>Patients</th>
<th>Odds Ratio (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>713</td>
<td>0.98 (0.97 – 0.99)</td>
<td>0.024</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>586</td>
<td>1.04 (0.98 – 1.10)</td>
<td>0.12</td>
</tr>
<tr>
<td>Employed</td>
<td>4</td>
<td>559</td>
<td>1.00 (0.96 – 1.03)</td>
<td>0.67</td>
</tr>
<tr>
<td>Income below poverty</td>
<td>4</td>
<td>784</td>
<td>1.05 (0.94 – 1.17)</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Highest education level

<table>
<thead>
<tr>
<th>Highest education level</th>
<th>No. of studies</th>
<th>Patients</th>
<th>Odds Ratio (95% CI)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementary</td>
<td>3</td>
<td>782</td>
<td>1.22 (0.88 – 1.56)</td>
<td>0.93</td>
</tr>
<tr>
<td>High school</td>
<td>5</td>
<td>1187</td>
<td>0.99 (0.90 – 1.10)</td>
<td>0.87</td>
</tr>
<tr>
<td>College and beyond</td>
<td>5</td>
<td>1187</td>
<td>1.03 (1.01 – 1.06)</td>
<td>0.032</td>
</tr>
</tbody>
</table>

Abbreviations: AFP - alpha-feto protein; BMI - body mass index
Supplementary Material 1: Search Strategy for MEDLINE

<table>
<thead>
<tr>
<th>No.</th>
<th>Search Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>exp Liver Neoplasms/</td>
</tr>
<tr>
<td>2</td>
<td>exp Carcinoma, Hepatocellular/</td>
</tr>
<tr>
<td>3</td>
<td>((hepat* OR liver*) adj3 (carcinom* OR tumour* OR tumor* OR neoplasm* OR malign* OR cancer*).tw. OR (HCC).tw.</td>
</tr>
<tr>
<td>4</td>
<td>1 OR 2 OR 3</td>
</tr>
<tr>
<td>5</td>
<td>(depress* OR dysthymi* OR (affective disorder*) OR (affective symptom*)).tw</td>
</tr>
<tr>
<td>6</td>
<td>exp Mood Disorders/</td>
</tr>
<tr>
<td>7</td>
<td>exp Depression/ OR exp Anxiety/</td>
</tr>
<tr>
<td>8</td>
<td>5 OR 6 OR 7</td>
</tr>
<tr>
<td>9</td>
<td>4 AND 8</td>
</tr>
</tbody>
</table>
Supplementary Material 2: Summary of included articles and quality assessment

<table>
<thead>
<tr>
<th>Author, Year</th>
<th>Country</th>
<th>Study design</th>
<th>Study cohort</th>
<th>Method of diagnosis for depression</th>
<th>Method of diagnosis for anxiety</th>
<th>Time of depression diagnosis</th>
<th>Total patients</th>
<th>No. of depression</th>
<th>No. of anxiety</th>
<th>Mean age (sd)</th>
<th>Mean BMI (sd)</th>
<th>Female (%)</th>
<th>Diabetes (%)</th>
<th>Smoking (%)</th>
<th>Alcohol (%)</th>
<th>Cirrhosis (%)</th>
<th>Curative treatment (%)</th>
<th>JBI Quality Assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paro et al 2021</td>
<td>USA</td>
<td>Retrospective</td>
<td>Population-based Hospital cohort</td>
<td>Clinician-rated</td>
<td>ICD-9/ DSM-5</td>
<td>During treatment</td>
<td>4441</td>
<td>142</td>
<td>68.5 (26.34)</td>
<td>29.83 (2.32)</td>
<td>27.6</td>
<td>100</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feldbrugge et al 2021</td>
<td>Germany</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Self-rated</td>
<td>Self-rated HADS HADS</td>
<td>After treatment</td>
<td>98</td>
<td>7</td>
<td>19</td>
<td>9.56</td>
<td>62.3 (10.26)</td>
<td>21.1</td>
<td>11.3</td>
<td>83.1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang et al 2019</td>
<td>China</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Self-rated</td>
<td>Self-rated HADS HADS</td>
<td>After treatment</td>
<td>136</td>
<td>40</td>
<td>33</td>
<td>59.4 (11)</td>
<td>61.1 (10.7)</td>
<td>19.1</td>
<td>11.0</td>
<td>100</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lee et al 2019</td>
<td>China</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Self-rated</td>
<td>Self-rated BDI BAI</td>
<td>After treatment</td>
<td>410</td>
<td>70</td>
<td>37</td>
<td>61.1 (10.7)</td>
<td>24.8 (3.5)</td>
<td>30.0</td>
<td>16.8</td>
<td>17.6</td>
<td>40.2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jia et al 2019</td>
<td>China</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Clinician-rated</td>
<td>Self-rated Hamilton-D BAI</td>
<td>During treatment</td>
<td>269</td>
<td>134</td>
<td>107</td>
<td>59</td>
<td>62.9 (10.26)</td>
<td>19.0</td>
<td>40.5</td>
<td>37.5</td>
<td>100.0</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheng et al 2019</td>
<td>USA</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Self-rated</td>
<td>CES-D</td>
<td>During treatment</td>
<td>266</td>
<td>64</td>
<td>67</td>
<td>59</td>
<td>62.9 (10.26)</td>
<td>21.1</td>
<td>11.3</td>
<td>83.1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temtap et al 2018</td>
<td>Thailand</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Self-reported</td>
<td>HADS HADS</td>
<td>During treatment</td>
<td>149</td>
<td>32</td>
<td>15</td>
<td>63.6 (7.48)</td>
<td>63.33 (5.27)</td>
<td>28.6</td>
<td>24.0</td>
<td>84.0</td>
<td>27.0</td>
<td>50</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Agarwal et al 2018</td>
<td>USA</td>
<td>Retrospective</td>
<td>Hospital cohort</td>
<td>Self-reported</td>
<td>Self-reported</td>
<td>After treatment</td>
<td>100</td>
<td>36</td>
<td>67</td>
<td>63.33 (5.27)</td>
<td>61.3 (13.6)</td>
<td>32.5</td>
<td>13.1</td>
<td>36.5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hwa et al 2015</td>
<td>Taiwan</td>
<td>Retrospective</td>
<td>Population-based Hospital cohort</td>
<td>Clinician-rated</td>
<td>ICD-9/ DSM-5</td>
<td>During treatment</td>
<td>55973</td>
<td>1041</td>
<td>1041</td>
<td>61.3 (13.6)</td>
<td>61.3 (13.6)</td>
<td>32.5</td>
<td>13.1</td>
<td>36.5</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chang et al 2015</td>
<td>Taiwan</td>
<td>Retrospective</td>
<td>Population-based Hospital cohort</td>
<td>Self-rated</td>
<td>Self-rated HADS HADS</td>
<td>During treatment</td>
<td>57</td>
<td>39</td>
<td>1</td>
<td>69.02 (8.4)</td>
<td>69.02 (8.4)</td>
<td>36.2</td>
<td>100</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hong et al 2014</td>
<td>China</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Self-rated</td>
<td>CES-D</td>
<td>During treatment</td>
<td>127</td>
<td>36</td>
<td>36</td>
<td>69.02 (8.4)</td>
<td>69.02 (8.4)</td>
<td>36.2</td>
<td>100</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mikoshiba et al 2013</td>
<td>Japan</td>
<td>Retrospective</td>
<td>Hospital cohort</td>
<td>Self-rated</td>
<td>HADS HADS</td>
<td>After treatment</td>
<td>127</td>
<td>36</td>
<td>36</td>
<td>69.02 (8.4)</td>
<td>69.02 (8.4)</td>
<td>36.2</td>
<td>100</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lai et al 2013</td>
<td>Taiwan</td>
<td>Retrospective</td>
<td>Population-based Hospital cohort</td>
<td>Clinician-rated</td>
<td>ICD-9/ DSM-5</td>
<td>At diagnosis</td>
<td>1815</td>
<td>114</td>
<td>114</td>
<td>74.31 (6.29)</td>
<td>74.31 (6.29)</td>
<td>37.6</td>
<td>35.0</td>
<td>1.3</td>
<td>54.5</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palmen et al 2012</td>
<td>Italy</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Clinician-rated</td>
<td>Hamilton-D</td>
<td>During treatment</td>
<td>32</td>
<td>15</td>
<td>15</td>
<td>69.02 (8.4)</td>
<td>69.02 (8.4)</td>
<td>36.2</td>
<td>100</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chu et al 2011</td>
<td>Taiwan</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Self-rated</td>
<td>HADS</td>
<td>After treatment</td>
<td>106</td>
<td>11</td>
<td>11</td>
<td>56.6 (12.3)</td>
<td>56.6 (12.3)</td>
<td>20.8</td>
<td>20.8</td>
<td>100</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jia et al 2010</td>
<td>China</td>
<td>Prospective</td>
<td>Hospital cohort</td>
<td>Clinician-rated</td>
<td>Hamilton-D</td>
<td>After treatment</td>
<td>60</td>
<td>36</td>
<td>36</td>
<td>56.6 (12.3)</td>
<td>56.6 (12.3)</td>
<td>20.8</td>
<td>20.8</td>
<td>100</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tian et al 2008</td>
<td>China</td>
<td>Retrospective</td>
<td>Hospital cohort</td>
<td>Self-rated</td>
<td>Self-rated SDS SAS</td>
<td>After treatment</td>
<td>112</td>
<td>60</td>
<td>58</td>
<td>56.6 (12.3)</td>
<td>56.6 (12.3)</td>
<td>20.8</td>
<td>20.8</td>
<td>100</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: BMI - body mass index; BAI - Beck’s Anxiety Inventory; BDI - Beck’s Depression Inventory; SAS - Zung Self-rating Anxiety Scale; SDS - Zung Self-rating Depression Scale; CES-D - Korean Center for Epidemiological Studies-Depression Scale; DSM-5 - Diagnostic and Statistical Manual of Mental Disorders, 5th edition; ICD-9 - International Classification of Disease, Ninth Revision; HAM-D - Hamilton Depression Rating Scale; HADS - Hospital Anxiety and Depression Scale; JBI - Joanna Briggs Institute
REFERENCES

