Erratum to ‘KASL clinical practice guidelines for management of chronic hepatitis B’ [Clin Mol Hepatol 2022;27:276-331]

The Korean Association for the Study of the Liver (KASL)

It has come to our attention that there are typographical errors in our article. The line 2 of page 283 ‘HBeAg’ should be read ‘hHBeAg’. In line 8 of left column on page 286, ‘In general, greater than F2 fibrosis’ should read ‘In general, fibrosis stage F2 or greater’.. In line 14 of left column on page 286, ‘inflammation greater than grade A2–A3’ should read ‘inflammatory activity of greater than or equal to A2’. The sentence on page 290 ‘. 13.9% in 10 years, and they showed higher risk of death and liver-related complications than did treated cirrhotic patients.’ should read ‘. 13.9% in 5 years,’ and untreated inactive cirrhotic patients showed higher risk of death and non-HCC liver-related complications than antiviral-treated cirrhotic patients.24 In Table 5, variables for CAGE-B and SAGE-B, the number of patients for FSAC and mPAGEEL-B, and mREACH-B were corrected. We apologize for any inconvenience caused.

DOI of the original article: https://doi.org/10.3350/cmh.2022.0084.e1

* Corresponding author: The Korean Association for the Study of the Liver (KASL) (Committee Chair: Jeong Won Jang)
Room A1210 Mapo-traplace, 53 Mapo-daroe, Mapo-gu, Seoul 04158, Korea
Tel: +82-2-703-0051, Fax: +82-2-703-0071, E-mail: kasl@kams.or.kr or garden@catholic.ac.kr
https://doi.org/10.3350/cmh.2022.0084.e1

Copyright © 2022 by Korean Association for the Study of the Liver
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Before correction of Table 5

<table>
<thead>
<tr>
<th>Prediction model</th>
<th>Patients</th>
<th>Antiviral therapy</th>
<th>Variables</th>
<th>Cutoff</th>
<th>Cumulative incidence of HCC</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAGE-B</td>
<td>5,147 Asian (Hong Kong)</td>
<td>Treatment-naive</td>
<td>Age, gender, HBV DNA, cirrhosis, core-promoter mutation*</td>
<td>Low (<5)</td>
<td>99.0% at 10 years</td>
<td></td>
</tr>
<tr>
<td>CAGE-B (Europe)</td>
<td>1,427 Western (Canada)</td>
<td>ETV or TDF</td>
<td>Age, gender, platelet, albumin</td>
<td>High (≥18)</td>
<td>99.4% at 5 years</td>
<td></td>
</tr>
</tbody>
</table>

After correction of Table 5

<table>
<thead>
<tr>
<th>Prediction model</th>
<th>Patients</th>
<th>Antiviral therapy</th>
<th>Variables</th>
<th>Cutoff</th>
<th>Cumulative incidence of HCC</th>
<th>NPV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAGE-B</td>
<td>5,147 Asian (Hong Kong)</td>
<td>Treatment-naive</td>
<td>Age, gender, HBV DNA, cirrhosis, core-promoter mutation*</td>
<td>Low (<5)</td>
<td>99.0% at 10 years</td>
<td></td>
</tr>
<tr>
<td>CAGE-B (Europe)</td>
<td>1,427 Western (Canada)</td>
<td>ETV or TDF</td>
<td>Age, gender, platelet, albumin</td>
<td>High (≥18)</td>
<td>99.4% at 5 years</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- HCC, hepatocellular carcinoma; NPV, negative predictive value; *hbHBeAg vs. A1, anti-HBe antibody; hHBeAg, HBcAg; TDF, tenofovir disoproxil fumarate; ETV, entecavir; FIB-4, fibrosis-4; APRI, aspartate aminotransferase-to-platelet ratio index; "core promoter" mutation is a deletion in the core promoter region of the HBV genome that results in a loss of HBx expression.

KCC, hepatitis B core antigen; LM, liver mass; HBV, hepatitis B virus; HBcAg, hepatitis B core antigen; hHBeAg, hepatitis B core antigen (HBcAg) positive;

CAGA-HCC, 1,417 Asian (Hong Kong) | Treatment-naive | Age, gender, platelet, albumin | Low (≤2) | 100% at 5 years |

THRI | 1,035 Asian (Taiwan) | Age, gender, platelet, albumin, LSM | Intermediate (6–10) | 87.5% at 10 years |

LS-B | 64.8% on antiviral therapy | Age, gender, platelet, albumin, LSM | High (≥18) | 94.0% at 5 years |

53.6% on antiviral therapy | Age, gender, platelet, albumin, LSM | Intermediate (6–10) | 87.5% at 10 years |

100% at 5 years | Age, gender, platelet, albumin, LSM | High (≥18) | 94.0% at 5 years |