NAFLD increases Risk of Carotid Atherosclerosis and Ischemic Stroke. An Updated Meta-
Analysis with 135,602 Individuals

Ansel Shao Pin Tang¹*, Kai En Chan¹*, Jingxuan Quek¹, Jieling Xiao¹, Phoebe Tay¹, Margaret Teng², Keng Siang Lee⁶, Snow Yunni Lin¹, May Zin Myint⁶, Benjamin Tan⁵, Vijay K Sharma⁵, Darren Jun Hao Tan¹, Wen Hui Lim¹, Apichat Kaewdech⁸, Daniel Huang¹,²,⁴, Nicholas WS Chew¹,³, Mohammad Shadab Siddiqui⁷, Arun J Sanyal⁷, Mark Muthiah²,⁴, Cheng Han Ng¹⁸

¹Yong Loo Lin School of Medicine, National University of Singapore, Singapore
²Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Singapore
³Department of Cardiology, National University Heart Centre, National University Hospital, Singapore
⁴National University Centre for Organ Transplantation, National University Health System, Singapore
⁵Division of Neurology, Department of Medicine, National University Hospital, Singapore
⁶Bristol Medical School, University of Bristol, Bristol, United Kingdom
⁷Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Virginia, United States of America
⁸Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand

*Equal Contribution

Corresponding Authors:

Ng Cheng Han
Yong Loo Lin School of Medicine, National University of Singapore
Singapore 10 Medical Dr, Singapore 117597
Tel: +65 6772 3737
Email: chenhannng@gmail.com
ABSTRACT

Background & Aims:
Non-Alcoholic Fatty Liver Disease (NAFLD) is associated with the development of cardiovascular disease. While existing studies have examined cardiac remodeling in NAFLD, there has been less emphasis on the development of carotid atherosclerosis and stroke. We sought to conduct a meta-analysis to quantify the prevalence, risk factors and degree of risk increment of carotid atherosclerosis and stroke in NAFLD.

Methods:
Embase and Medline were searched for articles relating to NAFLD, carotid atherosclerosis, and stroke. Proportional data was analysed using a generalized linear mixed model. Pairwise meta-analysis was conducted to obtain odds ratio or weighted mean difference for comparison between patients with and without NAFLD.

Results:
From pooled analysis of 30 studies involving 7,951 patients with NAFLD, 35.02% (95%CI: 27.36% to 43.53%) had carotid atherosclerosis with an odds ratio of 3.20 (95%CI: 2.37 to 4.32; p<0.0001). Pooled analysis of 25,839 patients with NAFLD found the prevalence of stroke to be 5.04% (95%CI: 2.74% to 9.09%) with an odds ratio of 1.88 (95%CI: 1.23 to 2.88; p=0.02) compared to non-NAFLD. The degree of steatosis assessed by ultrasonography in NAFLD was closely associated with increment in odds of carotid atherosclerosis and stroke. Older age significantly increased the odds of developing carotid atherosclerosis but not stroke in NAFLD.

Conclusions:
This meta-analysis shows that a stepwise increment of steatosis of NAFLD can significantly increase the odds of carotid atherosclerosis and stroke development in NAFLD. More than a third suffer from carotid atherosclerosis and routine assessment of carotid atherosclerosis is quintessential in NAFLD.
Abstract Word Count: 249

Keywords: Carotid Atherosclerosis; Stroke; Ischemic Stroke; Non-alcoholic Fatty Liver Disease
INTRODUCTION

NAFLD is the most common chronic liver disease affecting 22% to 30% of the global population1,2. NAFLD is characterized by the evidence of hepatic steatosis, either by imaging or histology, and the absence of secondary causes of hepatic lipid accumulation such as excessive alcohol consumption, long-term use of steatogenic medications, or monogenic hereditary disorders3. NAFLD encompasses a wide spectrum of disease ranging from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH), a more progressive and advanced form of the disease characterised by inflammation, ballooning and hepatocellular injury4, which may subsequently progress to liver cirrhosis5 and liver cancer6. The presence of NAFLD can result in a host of complications including the development of cardiovascular disease, extrahepatic, hepatic malignancy7 and depression8.

In NAFLD, the presence of chronic energy surplus causes lipo-toxicity, cell death, and inflammation9, which can lead to the development of atherosclerosis10 in the coronary, carotid, and peripheral arteries11. While current studies have predominantly focused on the development and progression of cardiac related disease in NAFLD, the potential implications of carotid atherosclerosis are severe and predisposes to the development of stroke. Stroke is the third-leading cause of disability and the second-leading cause of death worldwide12. Although common modifiable risk factors of stroke such as smoking, diet, and physical inactivity have been studied, there is still a limited understanding of stroke beyond its traditional risk factors13 especially in the presence of metabolic dysfunction. Recent studies have found NAFLD to be an independent risk factor of stroke14.

Current meta-analyses have focused on the association of NAFLD with coronary atherosclerosis and cardiovascular diseases15-18. However, a systematic analysis of the prevalence, risk factors, degree of steatosis in NAFLD and carotid atherosclerosis or stroke remains limited. Hence, this paper seeks to conduct an updated analysis of the associations of NAFLD with mean carotid intima-media thickness (CIMT), carotid atherosclerosis, stroke risk, and factors associated with these developments, with further subgroup analyses based on NAFLD severity and diagnostic modalities.
METHODS

Search Strategy and inclusion criteria

This review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for its synthesis. Two electronic databases, Medline and Embase, were used to search all available records till 21st October 2021. The search strategy used search terms including ‘non-alcoholic fatty liver disease’, ‘haemorrhagic stroke’, ‘ischemic stroke’, ‘CIMT’ and other related terms in titles and abstracts. The full search strategy is included in supplementary material 1. References were imported into Endnote X9 for duplicate removal. References of the included articles and previous meta-analysis were also manually screened to ensure a comprehensive search.

Eligibility and selection criteria

Four authors (KEC, JQ, ASPT, JX) independently screened abstracts and conducted full-text reviews to check the eligibility for inclusion, with disputes being resolved by obtaining the consensus of a fifth independent author (CHN). Only original articles were included, and reviews, commentaries and editorials were excluded. Studies that were written or translated into the English language were included. NAFLD was defined as evidence of hepatic steatosis, either by imaging or histology and lack of secondary causes of hepatic fat accumulation such as significant alcohol consumption, long-term use of steatogenic medication or monogenic hereditary disorders. Diagnosis of NAFLD was determined either from invasive methods, such as liver biopsy, or non-invasive methods including ultrasound and computed tomography (CT) scan. Blood based diagnosis including NAFLD fibrosis score (NFS) were excluded from the analysis. Studies were included if they fulfilled the following criteria: one of the following outcomes (i) mean CIMT, (ii) increased in CIMT, stenosis or plagues and (iii) stroke. Mean CIMT was defined as the average width of the intima-media layer of the carotid artery assessed by Duplex ultrasonography (DUS). Carotid arteriosclerosis was defined as the presence of carotid plaque/stenosis or an increase in CIMT. Stroke was defined as the presence of either ischemic and haemorrhagic stroke. For multiple studies inferring results from the same databases, duplicates were removed and only the most updated studies were included for analysis.
Data extraction and outcomes

NAFLD severity was graded according to ultrasound findings to maintain homogeneity. Mild NAFLD was defined as a slight diffuse increase in the hepatic parenchyma echogenicity with normal visualisation of the diaphragm and portal veins. Moderate NAFLD was defined as moderate diffuse increase in hepatic echogenicity, with slight impaired visualisation of the diaphragm and portal veins. Severe NAFLD was defined as a marked increase in hepatic echogenicity with poor or no visualisation of the diaphragm and portal veins20,21. Two pair of authors (KEC and ASPT; JQ and JL) independently extracted data including but not limited to (i) study characteristics such as: author, year, country, study design, (ii) patient characteristics such as sample size, age, male gender, diagnostic criteria, severity of NAFLD, body mass index (BMI), presence of metabolic conditions including dyslipidaemia and hypertension (HTN), (iii) clinical outcomes. Transformation of values were carried out using pre-existing formulae, in which mean and standard deviations were estimated from median and range using the widely adopted formula by Wan et al22. Blinded checking of the data by the authors was conducted to ensure accuracy of the data extracted and discrepancies in data were resolved through consensus.

Statistical Analysis

All analyses were conducted in R studio (version 5.0.0). A \(p\)-value \(\leq 0.05 \) was considered as the threshold for statistical significance. Statistical heterogeneity was assessed via \(I^2 \) and Cochran’s Q test values, where \(I^2 \) values of 25%, 50% and 75% represented low, moderate and high degrees of heterogeneity respectively23,24. A random effect model was used in all analyses regardless of heterogeneity measures as evidence has demonstrated more robust effect estimates with random effect compared to fixed-effect models25,26. An analysis of proportions was pooled using a generalized linear mixed model with Clopper-Pearson intervals27,28. To assess for risk factors, a generalized mix model with a logit link and inverse variance weightage was used to derived the odds ratio29. Bivariate analysis of dichotomous variables was analysed in Paul Mantel odds ratios (OR) with and mean difference (MD) with inverse variance for continuous variables. A subgroup analysis based on NAFLD diagnostic modality (Ultrasound; CT; Biopsy) and geographical location in the analysis of
CIMT. Where possible, a sensitivity analysis was also performed on severity of NAFLD (i.e., mild, moderate, severe) based on ultrasound evaluation. Publication bias was examined based on asymmetry of the funnel plots where sufficient studies were present (n>10) with Begg regression.

Quality Assessment

Quality assessment of included articles was done with the Joanna Briggs Institute (JBI) Critical Appraisal Tool\(^3\). The JBI assessment rates the quality of cohort studies on the premises of appropriateness of sample frame, sampling method, adequacy of sample size, data analysis, methods for identification and measurement of relevant condition, statistical analysis and response rate adequacy.
RESULTS

Summary of Included Articles

The initial search from Medline and Embase yielded a total of 1095 articles. After the removal of 327 duplicated during the title abstract sieve, 768 papers were remained for abstract screening and a final total of 64 studies conducted between 1998 to 2019 were included in the meta-analysis (figure 1). The studies included were conducted in various countries including Algeria\(^\text{31}\), China\(^\text{32-39}\), Croatia\(^\text{40}\), Egypt\(^\text{41,42}\), Greece\(^\text{43,44}\), India\(^\text{45-49}\), Iran\(^\text{50-57}\), Italy\(^\text{58-66}\), Japan\(^\text{67,68}\), Malaysia\(^\text{69,70}\), Romania\(^\text{71}\), Serbia\(^\text{72}\), South Korea\(^\text{73-78}\), Spain\(^\text{79,80}\), Taiwan\(^\text{81}\), Turkey\(^\text{82-92}\), USA\(^\text{93,94}\). Additionally, one study was a multicentre study based in Egypt\(^\text{43}\). A total of 135,602 patients were included in our analysis with 47,322 patients with NAFLD and 88,280 non-NAFLD controls. NAFLD defined by liver biopsy\(^\text{44,82,84,86,87,90,92}\) was found in seven studies, and by non-invasive methods, including ultrasonography\(^\text{31-43,45,81,83,85,86,88,89,91,93}\) in 57 studies and CT scan\(^\text{94}\) in one study. All studies were assessed to have a high (n=46) or moderate (n=18) quality based on the Joanna Briggs Institute Critical Appraisal Checklist assessment tool (supplementary table 2). There was no evidence of publication bias (figure 3) with Begg regression (p=0.787).

Carotid Atherosclerosis

Prevalence and Risk Factors of Carotid Atherosclerosis

In pooled analysis of 7,951 patients with NAFLD, the prevalence of carotid atherosclerosis in NAFLD was found to be 35.02% (95%CI: 27.36% to 43.53%). When a subgroup analysis by geographical regions was conducted, the prevalence of carotid atherosclerosis in NAFLD was found to be the highest in Europe (44.72%; 95%CI: 31.02% to 59.28%, figure 2), followed by North America (41.02%; 95%CI: 37.50% to 44.63%), Asia (35.89%; 95%CI: 24.61% to 48.98%) and the lowest in the Middle East (19.21%; 95%CI: 12.58% to 28.21%). Table 1 summarizes the risk factor of carotid atherosclerosis in NAFLD. The presence of older age (OR: 1.07, CI: 1.03 to 1.10, p=0.003) increases the risk of carotid atherosclerosis in NAFLD.

Comparative Outcomes
A summary of comparative results can be found in table 2. When compared to non-NAFLD controls, patients with NAFLD were shown to have significantly higher odds of carotid atherosclerosis (OR: 3.20; 95%CI: 2.37 to 4.32; p<0.0001). Subgroup analysis by diagnostic modality similarly demonstrated that patients with NAFLD diagnosed by liver biopsy (OR: 4.42; 95%CI: 2.29 to 8.54; p=0.02), ultrasound (OR: 3.32; 95%CI: 2.41 to 4.57; p<0.01) and CT scan (OR: 1.18; 95%CI: 1.01 to 1.39; p=0.04) had significantly higher odds of developing carotid atherosclerosis as compared to non-NAFLD controls. Patients with NAFLD were also found to have a significantly greater mean CIMT than those without NAFLD (MD: 0.12; 95%CI: 0.08 to 0.17; p<0.0001). Subgroup analysis of mean CIMT based on the severity of NAFLD revealed that liver pathology severity correlates with the worse outcomes. Patients suffering from moderate NAFLD (MD: 0.16; 95%CI: 0.07 to 0.24; p<0.01) and severe NAFLD (MD: 0.29; 95%CI: 0.15 to 0.43; p<0.01) had significant increase in mean CIMT but not in mild NAFLD (MD: -0.04, CI: -0.28 to 0.20, p=0.76).

Stroke

Prevalence and Risk Factors of Stroke

In pooled analysis of 25,839 individuals with NAFLD, the incidence of stroke in NAFLD was found to be 5.04% (95%CI: 2.74% to 9.09%). Specifically, the incidence of ischemic stroke in NAFLD was 6.05% (95%CI: 2.93% to 12.07%) while the incidence of haemorrhagic stroke was found to be 2.22% (95%CI: 0.22% to 18.77%). In NAFLD, there was no significant factor affecting the presence of stroke aside from an increase level of alanine aminotransferase (ALT) (OR 1.03, CI: 1.01 – 1.06, p=0.04).

Comparative Outcomes

Patients with NAFLD were shown to have significantly higher odds of developing stroke (OR: 1.88; 95%CI: 1.23 to 2.88; p=0.02, figure 3, table 2) when compared to non-NAFLD controls. Specifically, patients with NAFLD were found to have significantly higher odds of developing ischemic stroke (OR: 2.05; 95%CI: 1.05 to 3.98; p=0.04) when compared to non-NAFLD controls. However, comparisons between NAFLD and non-NAFLD controls found that there was no significant
difference in the odds of developing haemorrhagic stroke (OR: 1.85; 95%CI: 0.20 to 17.40; p=0.18).

Subgroup analysis classified by the severity of NAFLD disease found that patients suffering from mild (OR: 1.47; 95%CI: 1.35 to 1.59; p<0.01), moderate (OR: 1.67; 95%CI: 1.50 to 1.85; p<0.01) and severe (OR: 1.79; 95%CI: 1.46 to 2.21; p<0.01) NAFLD were all shown to have significantly higher odds of developing stroke when compared to non-NAFLD controls.
DISCUSSION

The presence of NAFLD has been associated with an increase in atherogenic dyslipidaemia95,96 leading to the development of cardiovascular complications such as myocardial infarctions97 and cerebrovascular accident7. While previous studies have demonstrated the association between NAFLD, carotid atherosclerosis81 and increased stroke risks37, the current findings further expand on the published literature by providing a contemporaneous analysis on the prevalence of carotid atherosclerosis and stroke in NAFLD, risks factors, and the influence of NAFLD severity and diagnostic modality. Significantly, the degree of steatosis severity in NAFLD can influence the progression of CIMT and stroke, with severe steatosis resulting in the highest odds of events.

In our meta-analysis, the prevalence of carotid atherosclerosis in NAFLD was found to be 35.02% (95%CI: 27.36% to 43.53%) and stroke was 5.04% (95%CI: 2.74% to 9.09%). Subgroup analysis based on geographical regions found the prevalence of carotid atherosclerosis in NAFLD to be highest in the West. While the geographical regions are not a representation of ethnicity, the prevalence of CIMT have been found to be higher in the Caucasian population98. In the analysis of risk factors, the presence of hyperlipidaemia and diabetes did not significantly increase the risk of stroke or carotid atherosclerosis in NAFLD. Only older age increased the risk of carotid atherosclerosis while ALT increased the risk of stroke in NAFLD. These results, however, should be interpreted with caution as these findings do not discount the possibility that hyperlipidaemia and diabetes may have been non-significant due to insufficient statistical power arising from the limited sample size in the risk factor analysis. However, the presence of NAFLD could potentially increase the risk of stroke and CIMT independently with more severe steatosis significantly increasing the rate of events.

While the presence of carotid atherosclerosis does not necessarily translate into an event of ischemic stroke, the presence of carotid atherosclerosis increases the risk of ischemic stroke by 20%99. The presence of carotid plaques has also been associated with cerebral atrophy and reduced cognitive ability100. In turn, while more than a third of NAFLD suffer from carotid atherosclerosis, only 5.04%
(95%CI: 2.74% to 9.09%) of NAFLD suffered from a stroke with twice the odds (OR: 1.88; 95%CI: 1.23 to 2.88; p=0.02) compared to non-NAFLD. Specifically, the presence of NAFLD was found to result in significantly higher odds of developing ischemic stroke (OR: 2.05; 95%CI: 1.05 to 3.98; p=0.04) but not in haemorrhagic stroke (OR: 1.85; 95%CI: 0.20 to 17.40; p=0.18). While the incidence of stroke in NAFLD is rather minute, the presence of NAFLD resulted in twice the odds of stroke and the implications of which can be devastating. Additionally, it is important that we do not undermine the presence of subclinical carotid atherosclerosis, evidently more prevalent in NAFLD as it represents prime therapeutic targets to prevent morbidity and mortality associated with clinically evident disease (i.e., stroke).

Prevailing guidelines by the American Association for the Study of Liver Diseases (AASLD) and the European Association for the Study of the Liver (EASL) has highlighted the importance of CVD risk evaluation in NAFLD. However, the use of CIMT for NAFLD has yet to be endorsed or routinely recommended for NAFLD. Yet, the DUS is a safe, easy, and cost-effective screening investigative tool that can be routinely employed in the clinic and has a sensitivity and specificity of 90% and 94% for carotid atherosclerosis. Additionally, the DUS can double as a screening modality for coronary artery disease (CAD) with a respective sensitivity and specificity of 78% and 75% for CAD. CAD is a known complication of NAFLD, and recent estimates suggest the prevalence of CAD to be 38.7% and 55.4% respectively. With the strong correlation between coronary and carotid atherosclerosis with NAFLD, future studies should assess the cost effectives and viability for routine DUS evaluation for NAFLD.

Strengths and Limitations

This study provides an up-to-date comprehensive assessment of the association between NAFLD, carotid atherosclerosis and increased stroke risk, including the prevalence, risk factors and severity of steatosis. However, there are several limitations. Although liver biopsy has higher sensitivity and specificity in the diagnosis of NAFLD, majority of studies utilized non-invasive, imaging-based investigations rather than biopsy to diagnose NAFLD. In addition, while modalities such as CT or
Fibroscan may be more accurate in grading NAFLD severity, grading of NAFLD severity was limited to ultrasonographic findings to maintain homogeneity with majority of studies utilizing ultrasonography (89.1%) and is similar to our previous meta-analysis108. We were also unable to assess the effects of degree of fibrosis on CIMT or stroke due to lack of granularity in the reported data. Lastly, the included studies were largely retrospective and are subjected to inherent limitations of the study design such as selection bias.

Conclusions
Patients with NAFLD were found to be associated with increased carotid atherosclerosis and stroke prevalence. While the prevalence of stroke in NAFLD may be low, the severe consequences highlight the importance for CIMT evaluation in NAFLD. Routine screening for carotid atherosclerosis, guided by the severity of hepatic steatosis, among patients with NAFLD might aid in the reduction of stroke.
ACKNOWLEDGEMENTS

All authors have made substantial contributions to all of the following: (1) the conception and design of the study, or acquisition of data, or analysis and interpretation of data, (2) drafting the article or revising it critically for important intellectual content, (3) final approval of the version to be submitted. No writing assistance was obtained in the preparation of the manuscript. The manuscript, including related data, figures and tables has not been previously published and that the manuscript is not under consideration elsewhere. This research meets the ethical guidelines, including adherence to the legal requirements of the study country.

Funding

No funding was required for this study.

Data Availability

All articles in this manuscript are available from Medline and Embase
AUTHOR CONTRIBUTIONS

Conceptualization: Mark Muthiah, Arun J Sanyal, Cheng Han Ng

Data curation: Ansel Shao Pin Tang, Kai En Chan, Jingxuan Quek, Cheng Han Ng

Formal analysis: Ansel Shao Pin Tang, Kai En Chan, Jingxuan Quek, Jieling Xiao, Phoebe Tay

Supervision: Margaret Teng, Keng Siang Lee, May Zin Myint, Benjamin Tan, Vijay K Sharma, Darren Jun Hao Tan, Wen Hui Lim, Daniel Huang, Nicholas WS Chew, Mohammad Shadab Siddiqui, Mark Muthiah, Arun J Sanyal, Cheng Han Ng

Validation: Ansel Shao Pin Tang, Kai En Chan, Jingxuan Quek, Jieling Xiao, Phoebe Tay, Margaret Teng, Keng Siang Lee, May Zin Myint, Benjamin Tan, Vijay K Sharma, Darren Jun Hao Tan, Wen Hui Lim, Daniel Huang, Apichat Kaewdech, Nicholas WS Chew, Mohammad Shadab Siddiqui, Mark Muthiah, Arun J Sanyal, Cheng Han Ng

Writing, original draft: Ansel Shao Pin Tang, Kai En Chan, Jingxuan Quek, Cheng Han Ng

Writing, review, and editing: Ansel Shao Pin Tang, Kai En Chan, Jingxuan Quek, Jieling Xiao, Phoebe Tay, Margaret Teng, Keng Siang Lee, Snow Yunni Lin, May Zin Myint, Benjamin Tan, Vijay K Sharma, Darren Jun Hao Tan, Wen Hui Lim, Daniel Huang, Apichat Kaewdech, Nicholas WS Chew, Mohammad Shadab Siddiqui, Mark Muthiah, Arun J Sanyal, Cheng Han Ng

All authors have read and approved the final version of the manuscript for submission.
CONFLICT OF INTEREST STATEMENT

AJS is President of Sanyal Biotechnology and has stock options in Genfit, Akarna, Tiziana, Indalo, Durect and Galmed. He has served as a consultant to Astra Zeneca, Nitto Denko, Enyo, Ardelyx, Conatus, Nimbus, Amarin, Salix, Tobira, Takeda, Jannsen, Gilead, Terns, Birdrock, Merck, Valeant, Boehringer-Ingelheim, Lilly, Hemoshear, Zafgen, Novartis, Novo Nordisk, Pfizer, Exhalenz and Genfit. He has been an unpaid consultant to Intercept, Echosens, Immuron, Galectin, Fractyl, Syntlogic, Affimune, Chemomab, Zydus, Nordic Bioscience, Albireo, Prosciento, Surrozen and Bristol Myers Squibb. His institution has received grant support from Gilead, Salix, Tobira, Bristol Myers, Shire, Intercept, Merck, Astra Zeneca, Malinckrodt, Cumberland and Norvatis. He receives royalties from Elsevier and UptoDate. MN has been on the advisory board for 89BIO, Gilead, Intercept, Pfizer, Novo Nordisk, Blade, EchoSens, Fractyl, Terns, Siemens and Roche diagnostic; MN has received research support from Allergan, BMS, Gilead, Galmed, Galectin, Genfit, Conatus, Enanta, Madrigal, Novartis, Pfizer, Shire, Viking and Zydus; MN is a minor shareholder or has stocks in Anaetos, Rivus Pharma and Viking.

All other authors do not have any conflict of interest to declare.

9. Muthiah MD, Cheng Han N, Sanyal AJ. A clinical overview of non-alcoholic fatty liver disease: A guide to diagnosis, the clinical features, and complications—What the non-specialist needs to know. *Diabetes, Obesity and Metabolism.* n/a(n/a).

70. Tan EC, Tai MS, Chan WK, Mahadeva S. Association between non-alcoholic fatty liver disease evaluated by transient elastography with extracranial carotid atherosclerosis in a multiethnic Asian community. *Jgh Open.* 2019;3(2):117-125.

75. Kim HC, Kim DJ, Huh KB. Association between nonalcoholic fatty liver disease and carotid intima-media thickness according to the presence of metabolic syndrome. *Atherosclerosis.* 2009;204(2):521-525.
76. Kim JH, Kim SY, Jung ES, et al. Carotid intima-media thickness is increased not only in non-alcoholic fatty liver disease patients but also in alcoholic fatty liver patients. *Digestion.* 2011;84(2):149-155.

FIGURE AND TABLE LEGENDS

Figure 1: PRISMA Flow Chart

Figure 2: Prevalence of Carotid Atherosclerosis by Geographical Region
Figure 3: Forest Plot on the Odds of Stroke in NAFLD

Table 1: Risk Factors of Carotid Atherosclerosis and Stroke in NAFLD

Table 2: Comparative Outcomes between NAFLD and non-NAFLD

Supplementary Material 1: Search Strategy of Meta-Analysis

Supplementary Material 2: Summary of Included Articles

Supplementary Material 3: Funnel plots of Publication Bias
Table 1: Risk Factors of Carotid Atherosclerosis and Stroke in NAFLD

<table>
<thead>
<tr>
<th></th>
<th>Carotid Atherosclerosis</th>
<th>Stroke</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>95% CI</td>
</tr>
<tr>
<td>Age</td>
<td>1.07</td>
<td>1.03-1.10</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.93</td>
<td>0.68-1.27</td>
</tr>
<tr>
<td>Body Mass Index</td>
<td>0.94</td>
<td>0.82-1.08</td>
</tr>
<tr>
<td>Systolic Blood Pressure</td>
<td>1.00</td>
<td>0.97-1.03</td>
</tr>
<tr>
<td>Diastolic Blood Pressure</td>
<td>1.03</td>
<td>0.96-1.10</td>
</tr>
<tr>
<td>Alanine Aminotransferase</td>
<td>1.01</td>
<td>0.99-1.02</td>
</tr>
<tr>
<td>Aspartate Aminotransferase</td>
<td>1.03</td>
<td>0.99-1.07</td>
</tr>
<tr>
<td>HbA1C</td>
<td>1.06</td>
<td>0.80-1.39</td>
</tr>
<tr>
<td>Dyslipidaemia</td>
<td>1.01</td>
<td>0.74-1.39</td>
</tr>
</tbody>
</table>

Legend: CIMT, Carotid intima-media thickness; NAFLD, non-alcoholic fatty liver disease; OR, Odds ratio; HbA1C, Hemoglobin A1C; * bolded p-value ≤0.05 denotes statistical significance
<table>
<thead>
<tr>
<th>Outcome</th>
<th>Total</th>
<th>Effect Size</th>
<th>95% Confidence Interval</th>
<th>P-value</th>
<th>I^2 (%)</th>
<th>Cochran Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean CIMT</td>
<td>46686</td>
<td>MD: 0.12</td>
<td>0.08 to 0.17</td>
<td>$<0.001^*$</td>
<td>98.60</td>
<td>0.00</td>
</tr>
<tr>
<td>Carotid Atherosclerosis</td>
<td>23793</td>
<td>OR: 3.20</td>
<td>2.37 to 4.32</td>
<td>$<0.001^*$</td>
<td>87.80</td>
<td><0.01</td>
</tr>
<tr>
<td>Overall Stroke</td>
<td>83043</td>
<td>OR: 1.88</td>
<td>1.23 to 2.88</td>
<td>0.02^*</td>
<td>45.30</td>
<td>0.12</td>
</tr>
<tr>
<td>Hemorrhagic Stroke</td>
<td>1968</td>
<td>OR: 1.85</td>
<td>0.20 to 17.40</td>
<td>0.18</td>
<td>0.00</td>
<td>0.54</td>
</tr>
<tr>
<td>Ischemic Stroke</td>
<td>82146</td>
<td>OR: 2.05</td>
<td>1.05 to 3.98</td>
<td>0.04^*</td>
<td>57.30</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Legend: CIMT, Carotid intima-media thickness; MD, Mean Difference; NAFLD, non-alcoholic fatty liver disease; OR, Odds Ratio; CI. * bolded p-value ≤0.05 denotes statistical significance.