Leaky Gut-Derived TNF-α Causes Sarcopenia in Patients with Liver Cirrhosis

Takumi Kawaguchi, Takuji Torimura

Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume, 830-0011, Japan

Running head: Gut-liver-muscle axis of sarcopenia in cirrhotics

Keywords
gut-liver-muscle axis, tumor necrosis factor-alpha, inflammatory cytokine, muscle atrophy, chronic liver disease

Corresponding Author
Takumi Kawaguchi, M.D., Ph.D.
Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine
67 Asahi-machi, Kurume 830-0011, Japan
Tel: +81-942-31-7627, Fax: +81-942-31-2623
E-mail: takumi@med.kurume-u.ac.jp

Abbreviations
TNF-α, tumor necrosis factor-alpha; ZO-1, zonula occludens-1

Authors’ contributions
All authors were responsible for the interpretation of data, the drafting,
and the critical revision of the manuscript for important intellectual content.

Conflicts of Interest

Takumi Kawaguchi received lecture fees from Janssen Pharmaceutical K.K., Mitsubishi Tanabe Pharma Corporation, and Otsuka Pharmaceutical Co., Ltd. The other author has no conflicts of interest.

Financial Support

This work was supported by Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research (C) JP20K08395 and by the Research Program on Hepatitis from Japan Agency for Medical Research and Development, AMED under 21fk0210094.
Sarcopenia is frequently seen in patients with liver cirrhosis and is an independent risk factor for poor prognosis1-5. Sarcopenia is an important therapeutic target; however, its pathogenesis remains unclear, and a therapeutic strategy has not been established in patients with liver cirrhosis1, 5. A recent study by Han et al. investigated the association of liver cirrhosis-related systemic inflammation with sarcopenia in a rat model of liver cirrhosis6. They found that tumor necrosis factor-alpha (TNF-\(\alpha\)) was associated with the expression of intestinal tight junction proteins, muscular myostatin, and sarcopenia in a rat model of liver cirrhosis. Furthermore, they reported that treatment with rifaximin caused muscle hypertrophy with a reduction in both serum TNF-\(\alpha\) levels and expression of muscular myostatin in a rat model of liver cirrhosis. Thus, they revealed that 1) TNF-\(\alpha\) is involved in the pathogenesis of sarcopenia, and 2) rifaximin is a possible therapeutic strategy for liver cirrhosis-related sarcopenia through the downregulation of TNF-\(\alpha\).

Aging and physical inactivity are the main mechanisms underlying the development of sarcopenia1. Besides these factors, various liver-related metabolic dysfunctions are involved in the pathogenesis of sarcopenia in patients with liver cirrhosis1, 5, 7. The metabolic dysfunctions are depletion of branched-chain amino acids, carnitine, vitamin D, testosterone, and hyperammonemia1, 5, 7. In patients with liver cirrhosis, chronic inflammation is associated with the development of various complications including ascites; however, limited information is available on the association between inflammatory cytokines and sarcopenia. Han et al. found a significant negative correlation of serum TNF-\(\alpha\) level with muscle weight and myofiber diameter in a
rat model of liver cirrhosis6. Furthermore, they found that serum TNF-\(\alpha\) levels were significantly higher in patients with sarcopenia than in those with no sarcopenia6. Shiraki et al. previously reported that, in patients with liver cirrhosis, elevated serum TNF-\(\alpha\) levels were associated with malnutrition8. In addition, TNF-\(\alpha\) has been reported to promote myosin heavy-chain degradation and apoptosis of muscle fibers, leading to muscle atrophy9, 10. These findings suggest that upregulation of TNF-\(\alpha\) is important in the pathogenesis of sarcopenia in patients with liver cirrhosis.

In the liver, TNF-\(\alpha\) is mainly released from Kupffer cells and hepatic stellate cells by stimulation of intestinal bacteria and their products, including lipopolysaccharide11. Therefore, increased intestinal permeability seems to be an upstream event for the upregulation of serum TNF-\(\alpha\) levels in patients with liver cirrhosis. In fact, a variety of basic and clinical studies have implicated that gut dysbiosis affects the intestinal epithelial barrier and leads to translocation of gut contents to the liver and beyond12, 13. Intestinal permeability is regulated by intercellular adhesion complexes called tight junctions14. Han et al. demonstrated that intestinal expression levels of tight junction proteins such as occludin and zonula occludens-1 (ZO-1) were inversely correlated with serum TNF-\(\alpha\) levels in a rat model of liver cirrhosis6. These findings are in good agreement with those of previous studies. The intestinal expression of claudin-1 and occludin, tight junction proteins, has been reported to be associated with endotoxin levels in a rat model of liver cirrhosis15. The intestinal expression of claudin-1 has also been reported to be reduced and inversely correlated with endotoxin concentrations in patients with liver cirrhosis16. Furthermore, Han et al.
first demonstrated that the intestinal expression levels of occludin and ZO-1 were positively correlated with muscle weight and myofiber diameter\(^6\). Taken together, disruption of the intestinal tight junction may be responsible for the influx of lipopolysaccharide into the liver. Lipopolysaccharide stimulates Kupffer cells and hepatic stellate cells, leading to releasing TNF-\(\alpha\). Upregulated TNF-\(\alpha\) causes sarcopenia in patients with liver cirrhosis (Figure 1).

Hyperammonemia is also a risk factor for sarcopenia in patients with liver cirrhosis\(^{17}\). Rifaximin suppresses ammonia-producing colonic bacteria and improves hyperammonemia\(^{18}\). In addition, rifaximin alters the gut microbiome composition (Lactobacillus, Streptococcus, Veillonella), which contributes to reducing hyperammonemia and endotoxia in cirrhosis\(^{18}\). Furthermore, rifaximin has been reported to increase circulating saturated and unsaturated fatty acids and to modulate the metabolism of the host\(^{19,20}\). Ammonia-lowering treatment, including rifaximin, has been reported to reverse sarcopenia in a rat model of hyperammonemia by restoring skeletal muscle proteostasis\(^{21}\). Han et al. demonstrated that treatment with rifaximin increased muscle mass and myofiber diameter in a rat model of cirrhosis\(^6\). However, no reduction in blood ammonia levels was observed in rifaximin-treated rats compared to control rats. In contrast, rifaximin significantly reduced serum TNF-\(\alpha\) levels and muscular expression of myostatin. Rifaximin has been reported to upregulate ZO-1 and reduce portal endotoxin levels in a rat model of liver cirrhosis\(^{22}\). Rifaximin has also been reported to reduce endotoxin activity and improve intestinal permeability, as evaluated by serum soluble CD163 and mannose receptors in patients with liver cirrhosis\(^{23}\). Accordingly, rifaximin may tighten the intestinal barrier and suppress
serum TNF-α levels, leading to an improvement in sarcopenia with
downregulation of myostatin expression.

The study by Han et al. showed that TNF-α is involved in the
pathogenesis of sarcopenia in a rat model of liver cirrhosis. They also showed
that rifaximin reduced serum TNF-α levels and improved sarcopenia in a rat
model of liver cirrhosis. However, this study had some limitations. First, the
pathogenesis of an increase in intestinal permeability remains unclear. Rifaximin
is a non-systemic antibiotic that has been reported to alter the gut microbiota
components in patients with liver cirrhosis18. Gut microbiota components are
associated with various metabolites that regulate intestinal permeability and
inflammatory cytokines11, 24. Therefore, it is important to evaluate the impact of
alterations in gut microbiota components and their metabolites on intestinal
permeability. Second, it remains unclear whether rifaximin has an additive effect
on nutritional and exercise therapies for sarcopenia. Third, it also remains
unclear whether improvement of sarcopenia suppresses disease progression,
development of life-threatening complications, and mortality in patients with liver
cirrhosis. Further studies should focus on the effects of the combination of
nutritional/exercise therapies and rifaximin treatment on long-term outcomes in
patients with liver cirrhosis.

Alterations in intestinal permeability and inflammatory cytokines are
crucial in the pathogenesis of sarcopenia in patients with liver cirrhosis. Further
elucidation of the gut-liver-muscle axis may serve as a therapeutic strategy for
sarcopenia.
References

Figure 1. A proposed gut-liver-muscle axis of liver cirrhosis-related sarcopenia.

Disruption of the intestinal tight junction causes an influx of lipopolysaccharide into the liver. Lipopolysaccharide stimulates Kupffer cells and hepatic stellate cells and releases TNF-α. Then, TNF-α causes sarcopenia.

Abbreviations: LPS, lipopolysaccharide; TNF-α; tumor necrosis factor-α.